Skip to main content
Log in

High-Performance Thick Cathode Based on Polyhydroxyalkanoate Binder for Li Metal Batteries

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Thick cathodes can overcome the low capacity issues, which mostly hamper the performance of the conventional active cathode materials, used in rechargeable Li batteries. However, the typical slurry-based method induces cracking and flaking during the fabrication of thick electrodes. In addition, a significant increase in the charge-transfer resistance and local current overload results in poor rate capabilities and cycling stabilities, thereby limiting electrode thickening. In this study, a synergistic dual-network combination strategy based on a conductive nanofibrillar network (CNN) and a nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder is used to demonstrate the feasibility of constructing a high-performance thick cathode. The CNN and aPHA dual network facilitates the fabrication of a thick cathode (≥ 250 μm thickness and ≥ 90 wt% active cathode material) by a mass-producible slurry method. The thick cathode exhibited a high rate capability and excellent cycling stability. In addition, the thick cathode and thin Li metal anode pair (Li//t-NCM) exhibited an optimal energy performance, affording high-performance Li metal batteries with a high areal energy of ~ 25.3 mW h cm−2, a high volumetric power density of ~ 1720 W L−1, and an outstanding specific energy of ~ 470 W h kg−1 at only 6 mA h cm−2.

Graphical Abstract

TOC figure: Synergistic combination of a conductive nano-fibrillar network (CNN) and nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder that affords the high-performance cathode with ≥ 250 μm thickness and ≥ 90 wt% active cathode material. Li-metal batteries (Li//t-NCM) based on thick cathodes and thin Li exhibit outstanding energy storage performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Liu YY, Zhu YY, Cui Y. Challenges and opportunities towards fast-charging battery materials. Nat Energy. 2019;4:540–50.

    Article  ADS  Google Scholar 

  2. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7:19–29.

    Article  CAS  PubMed  Google Scholar 

  3. Schmidt O, Hawkes A, Gambhir A, Staffell I. The future cost of electrical energy storage based on experience rates. Nat Energy. 2017;2:17110.

    Article  ADS  Google Scholar 

  4. Li WD, Erickson EM, Manthiram A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat Energy. 2020;5:26–34.

    Article  ADS  CAS  Google Scholar 

  5. Huang H, Zhang LP, Tian HY, Yan JQ, Tong JF, Liu XH, Zhang HX, Huang HQ, Hao SM, Gao J, Yu L, Li H, Qiu JS, Zhou WD. Pulse high temperature sintering to prepare single-crystal high nickel oxide cathodes with enhanced electrochemical performance. Adv Energy Mater. 2023;13:2203188.

    Article  CAS  Google Scholar 

  6. Kim JH, Park KJ, Kim SJ, Yoon CS, Sun YK. A method of increasing the energy density of layered Ni-rich Li [Ni1−2xCoxMnx]O2 cathodes (x = 0.05, 0.1, 0.2). J Mater Chem A. 2019;7:2694–701.

    Article  CAS  Google Scholar 

  7. Ryu HH, Park KJ, Yoon CS, Sun YK. Capacity fading of Ni-Rich Li [NixCoyMn1–xy]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density Li-ion batteries: Bulk or surface degradation? Chem Mater. 2018;30:1155–63.

    Article  CAS  Google Scholar 

  8. Yan PF, Zheng JM, Chen TW, Luo LL, Jiang YY, Wang K, Sui ML, Zhang JG, Zhang SL, Wang CM. Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. Nat Commun. 2018;9:2437.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  9. Park HK, Park HY, Song K, Song SH, Kang SS, Ko KH, Eum DG, Jeon YG, Kim JH, Seong WM, Kim HS, Park JW, Kang KS. In situ multiscale probing of the synthesis of a Ni-rich layered oxide cathode reveals reaction heterogeneity driven by competing kinetic pathways. Nat Chem. 2022;14:614.

    Article  CAS  PubMed  Google Scholar 

  10. Jung CH, Kim DH, Eum DG, Kim KH, Choi JH, Lee JW, Kim HH, Kang KS, Hong SH. New insight into microstructure engineering of Ni-rich layered oxide cathode for high performance lithium ion batteries. Adv Funct Mater. 2021;31:2010095.

    Article  CAS  Google Scholar 

  11. Aurora GM, Friederike R, Lars FS, Marcel HB, Martin W, Tobias P, Richard S. Magnesium substitution in Ni-rich NMC layered cathodes for high-energy lithium ion batteries. Adv Energy Mater. 2022;12:2103045.

    Article  Google Scholar 

  12. Sheng H, Meng XH, Xiao DD, Fan M, Chen WP, Wan J, Tang JL, Zou YG, Wang FY, Wen R, Shi JL, Guo YG. An air-stable high-nickel cathode with reinforced electrochemical performance enabled by convertible amorphous Li2CO3 modification. Adv Mater. 2022;34:2108947.

    Article  CAS  Google Scholar 

  13. Abebe EB, Yang CC, Wu SH, Chien WC, Li YJJ. Effect of Li excess on electrochemical performance of Ni-Rich LiNi0.9Co0.05Mn0.05O2 cathode materials for Li-ion batteries. ACS Appl Energy Mater. 2021;4:14295–308.

    Article  CAS  Google Scholar 

  14. Jing ZW, Wang SN, Fu Q, Baran V, Tayal A, Casati NPM, Missyul A, Simonelli L, Knapp M, Li FJ, Ehrenberg H, Indris S, Shan CX, Hua WB. Architecting “Li-rich Ni-rich” core-shell layered cathodes for high-energy Li-ion batteries. Energy Storage Mater. 2023;59:102775.

    Article  Google Scholar 

  15. Guo YJ, Zhang CH, Xin S, Shi JL, Wang WP, Fan M, Chang YX, He WH, Wang EH, Zou YG, Yang XA, Meng FQ, Zhang YY, Lei ZQ, Yin YX, Guo YG. Competitive doping chemistry for Nickel-rich layered oxide cathode materials. Angew Chem Int Ed. 2022;61:e202116865.

    Article  CAS  Google Scholar 

  16. Bi YJ, Tao JH, Wu YQ, Li LZ, Xu YB, Hu EY, Wu BB, Hu JT, Wang CM, Zhan JG, Qi Y, Xiao J. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science. 2020;370:1313–7.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Yan PF, Zheng JM, Liu J, Wang BQ, Cheng XP, Zhang YF, Sun XL, Wang CM, Zhang JG. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat Energy. 2018;3:600–5.

    Article  ADS  CAS  Google Scholar 

  18. Kuang YD, Chen CJ, Kirsch D, Hu LB. Thick electrode batteries: principles, opportunities, and challenges. Adv Energy Mater. 2019;9:1901457.

    Article  Google Scholar 

  19. Zhang X, Hui ZY, King S, Wang L, Ju ZY, Wu JY, Takeuchi KJ, Marschilok AC, West AC, Takeuchi ES, Yu GH. Tunable porous electrode architectures for enhanced Li-ion storage kinetics in thick electrodes. Nano Lett. 2021;21:5896–904.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Zheng JX, Zhao Q, Liu XT, Tang T, Bock DC, Bruck AM, Tallman KR, Housel LM, Kiss AM, Marschilok AC, Takeuchi ES, Takeuchi KJ, Archer LA. Nonplanar electrode architectures for ultrahigh areal capacity batteries. ACS Energy Lett. 2019;4:271–5.

    Article  CAS  Google Scholar 

  21. Wu TQ, Zhao ZD, Zhang JJ, Zhang C, Guo YX, Cao YJ, Pan SX, Liu YC, Liu PY, Ge YH, Liu W, Dong L, Lu HB. Thick electrode with thickness-independent capacity enabled by assembled two-dimensional porous nanosheets. Energy Storage Mater. 2021;36:265–71.

    Article  Google Scholar 

  22. Han X, Zhou W, Chen M, Luo L, Gu L, Zhang Q, Chen J, Liu B, Chen S, Zhang W. Liquid-phase sintering enabling mixed ionic-electronic interphases and free-standing composite cathode architecture toward high energy solid-state battery. Nano Res. 2022;15:6156–67.

    Article  ADS  CAS  Google Scholar 

  23. Han X, Wang S, Xu Y, Zhong G, Zhou Y, Liu B, Jiang X, Wang X, Li Y, Zhang Z, Chen S, Wang C, Yang Y, Zhang W, Wang J, Liu J, Yang J. Energy Environ Sci. 2021;14:5044–56.

    Article  CAS  Google Scholar 

  24. Arnot DJ, Mayilvahanan KS, Hui JY, Takeuchi KJ, Marschilok AC, Bock DC, Wang L, West AC, Takeuchi ES. Thick electrode design for facile electron and ion transport: architectures, advanced characterization, and modeling. Acc Mater Res. 2022;3:472–83.

    Article  CAS  Google Scholar 

  25. Wu JY, Zhang X, Ju ZY, Wang L, Hui ZY, Mayilvahanan K, Takeuchi KJ, Marschilok AC, West AC, Takeuchi ES, Yu GH. From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems. Adv Mater. 2021;33:2101275.

    Article  CAS  Google Scholar 

  26. Stein M, Mistry A, Mukherjee PP. Mechanistic understanding of the role of evaporation in electrode processing. J Electrochem Soc. 2017;164:A1616–27.

    Article  CAS  Google Scholar 

  27. Singh KB, Tirumkudulu MS. Cracking in drying colloidal films. Phys Rev Lett. 2007;98:218302.

    Article  ADS  PubMed  Google Scholar 

  28. Chiu RC, Garino TJ, Cima MJ. Drying of granular ceramic films. 1. Effect of processing variables on cracking behavior. J Am Ceram Soc. 1993;76:2257–64.

    Article  CAS  Google Scholar 

  29. Park KY, Park JW, Seong WM, Yoon KH, Hwang TH, Ko KH, Han JH, Yang JD, Kang KS. Understanding capacity fading mechanism of thick electrodes for lithium-ion rechargeable batteries. J Power Sources. 2020;468:228369.

    Article  CAS  Google Scholar 

  30. Zhao D, Chen W. Analysis of polarization and thermal characteristics in lithium-ion battery with various electrode thicknesses. J Energy Storage. 2023;71:108159.

    Article  Google Scholar 

  31. Chen CJ, Zhang Y, Li YJ, Kuang YD, Song JW, Luo W, Wang YB, Yao YG, Pastel G, Xie J, Hu LB. Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors. Adv Energy Mater. 2017;7:1700595.

    Article  Google Scholar 

  32. Wang JR, Wang MM, Ren NQ, Dong JM, Li YX, Chen CH. High-areal-capacity thick cathode with vertically-aligned micro-channels for advanced lithium-ion batteries. Energy Storage Mater. 2021;39:287–93.

    Article  Google Scholar 

  33. Zhang MH, Chouchane M, Shojaee SA, Winiarski B, Liu Z, Li LT, Pelapur R, Shodiev A, Yao WL, Doux JM, Wang S, Li YX, Liu CY, Lemmens H, Franco AA, Meng YS. Coupling of multiscale imaging analysis and computational modeling for understanding thick cathode degradation mechanisms. Joule. 2023;7:201–20.

    Article  CAS  Google Scholar 

  34. Kim NY, Moon J, Ryou MH, Kim SH, Kim JH, Kim JM, Bang J, Lee SY. Amphiphilic bottlebrush polymeric binders for high-mass-loading cathodes in lithium-ion batteries. Adv Energy Mater. 2022;12:2102109.

    Article  CAS  Google Scholar 

  35. Ryu M, Hong YK, Lee SY, Park JH. Ultrahigh loading dry-process for solvent-free lithium-ion battery electrode fabrication. Nat Commun. 2023;14:1316.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Park SH, King PJ, Tian RY, Boland CS, Coelho J, Zhang CF, McBean P, McEvoy N, Kremer MP, Daly D, Coleman JN, Nicolosi V. High areal capacity battery electrodes enabled by segregated nanotube networks. Nat Energy. 2019;4:560–7.

    Article  ADS  CAS  Google Scholar 

  37. Zhang YF, Li FZ, Yang K, Liu X, Chen YG, Lao ZQ, Mai KC, Zhang ZS. Polymer molecular engineering enables rapid electron/ion transport in ultra-thick electrode for high-energy-density flexible lithium-ion battery. Adv Funct Mater. 2021;31:2100434.

    Article  CAS  Google Scholar 

  38. Yang K, Yang LY, Wang ZJ, Guo B, Song ZB, Fu Y, Ji YC, Liu MQ, Zhao WG, Liu XH, Yang SC, Pan F. Constructing a highly efficient aligned conductive network to facilitate depolarized high-areal-capacity electrodes in Li-ion batteries. Adv Energy Mater. 2021;11:2100601.

    Article  CAS  Google Scholar 

  39. He Y, Jing L, Feng LX, Yang SF, Yang JR, Fu XW, Yang W, Wang Y. A smart polymeric sol-binder for building healthy active-material microenvironment in high-energy-density electrodes. Adv Energy Mater. 2023;13:2203272.

    Article  CAS  Google Scholar 

  40. Xu J, Peng Y, Xing W, Ding Z, Zhang S, Pang H. Metal–organic frameworks marry carbon: booster for electrochemical energy storage. J Energy Storage. 2022;53:105104.

    Article  Google Scholar 

  41. Liu X, Zhang Y, Guo X, Pang H. Electrospun metal–organic framework nanofiber membranes for energy storage and environmental protection. Adv Fiber Mater. 2022;4:1463–85.

    Article  CAS  Google Scholar 

  42. Cho SY, Yun YS, Jang D, Jeon JW, Kim BH, Lee S, Jin HJ. Ultra strong pyroprotein fibres with long-range ordering. Nat Commun. 2017;8:74.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  43. Kim H, Hyun JC, Kim D, Kwak JH, Lee JB, Moon JH, Choi J, Lim HD, Yang SJ, Jin HM, Ahn DJ, Kang K, Jin HJ, Lim HK, Yun YS. Revisiting lithium- and sodium-ion storage in hard carbon anodes. Adv Mater. 2023;35:2209128.

    Article  CAS  Google Scholar 

  44. Park MH, Ha S, Park J, Kang DH, Hyun JC, Yoon J, Jin HJ, Yun TS. Multifunctional surface-engineering of 3D-lithiophilic nanocarbon scaffold for high-voltage anode-minimized lithium metal batteries. Chem Eng J. 2023;458:141478.

    Article  CAS  Google Scholar 

  45. Gallagher KG, Trask SE, Bauer C, Woehrle T, Lux SF, Tschech M, Lamp P, Polzin BJ, Ha S, Long B, Wu QL, Lu WQ, Dees DW, Jansen AN. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes. J Electrochem Soc. 2016;163:A138–49.

    Article  CAS  Google Scholar 

  46. Hu YH, Li H, Chen ZD, Cen WL, Wang Q, Chen YG, Davoodi A, Liu W. Li-alloy texture creates in-built Li(110) epitaxy in a thin Li-metal anode allowing high depth-of-discharge cycling in carbonate electrolyte. Chem Eng J. 2023;466:143084.

    Article  CAS  Google Scholar 

  47. Wang QS, Meng T, Li YH, Yang JD, Huang BB, Ou SQ, Meng CG, Zhang SQ, Tong YX. Consecutive chemical bonds reconstructing surface structure of silicon anode for high-performance lithium-ion battery. Energy Stor Mater. 2021;39:354–64.

    Google Scholar 

  48. Chen ZD, Soltani A, Chen YG, Zhang QB, Davoodi A, Hosseinpour S, Peukert W, Liu W. Emerging organic surface chemistry for Si anodes in lithium-ion batteries: advances, prospects, and beyond. Adv Energy Mater. 2022;12:2200924.

    Article  CAS  Google Scholar 

  49. Yoon HJ, Kim NR, Jin HJ, Yun TS. Macroporous catalytic carbon nanotemplates for sodium metal anodes. Adv Energy Mater. 2018;8:1701261.

    Article  Google Scholar 

  50. Kang DH, Lee E, Youn BS, Ha S, Hyun JC, Yoon J, Jang D, Kim KS, Kim H, Lee SM, Lee S, Jin HJ, Lim HK, Yun YS. Critical factors to inhibit water-splitting side reaction in carbon-based electrode materials for zinc metal anodes. Carbon Energy. 2022;4:1080–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (RS-2023-00302689 and NRF-2021R1A4A2001403). This study was funded by the Korea Institute of Science and Technology (KIST) Institutional Program (2V09840). We gratefully acknowledge the support of CJ CheilJedang Corp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Soo Yun.

Ethics declarations

Conflict of interest

The authors state that there are no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 40575 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, D.H., Park, M., Lee, J. et al. High-Performance Thick Cathode Based on Polyhydroxyalkanoate Binder for Li Metal Batteries. Adv. Fiber Mater. 6, 214–228 (2024). https://doi.org/10.1007/s42765-023-00347-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00347-8

Keywords

Navigation